Closing today: 3.4(1)(2)
Closing Tues: $\quad 10.2$
Closing Fri: $\quad 3.5(1)(2)$
Office Hours - 1:30-3:00 in COM B-006

10.2 Parametric Equations (continued)

Recall: Given $x=x(t), y=y(t)$, we find the slope of the tangent line using

$$
\frac{d y}{d x}=\frac{d y / d t}{d x / d t}
$$

Entry Task: The motion of a particular pitched baseball is given by

$$
\begin{aligned}
& x(t)=142 t \\
& y(t)=-16 t^{2}+4 t+5
\end{aligned}
$$

Find the equation of the tangent line at
$t=1 / 2$.

Example: Old test question

Find all points on

$$
\begin{aligned}
& x(t)=t^{2}+t+3 \\
& y(t)=t^{3}-2
\end{aligned}
$$

when the tangent line has slope 1 .

Speed: For a parametric equation, it is natural to ask what the "speedometer" speed is for the moving object.
"average speed from t to $t+h$ " $=\frac{\text { change in distance }}{\text { change in time }}$

$$
\begin{aligned}
& \approx \frac{\sqrt{(x(t+h)-x(t))^{2}+(y(t+h)-y(t))^{2}}}{h} \\
& =\sqrt{\left(\frac{x(t+h)-x(t)}{h}\right)^{2}+\left(\frac{y(t+h)-y(t)}{h}\right)^{2}}
\end{aligned}
$$

"instantaneous speed at t " is the limit of the above expressions as $h \rightarrow 0$

$$
=\sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}}
$$

Thus,

$$
\text { speed }=\sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}}
$$

Example: Again,

$$
\begin{aligned}
& x(t)=142 t \\
& y(t)=-16 t^{2}+4 t+5
\end{aligned}
$$

Find the speed of the ball at $t=1 / 2$.

HW10.2 \#7 Hint:
$x=9 t^{2}+3, y=6 t^{3}+3$
There are two tangent lines to this curve that also pass through $(12,9)$.

Find these two tangent lines.

Special parametric equations:

1. Uniform Circular Motion:

$$
\begin{aligned}
& x=x_{c}+r \cos \left(\theta_{0}+\omega t\right) \\
& y=y_{c}+r \sin \left(\theta_{0}+\omega t\right)
\end{aligned}
$$

Note the fundamental circular motion facts from precalculus
(only true in radians):
linear speed $=v=\omega r$,
arc length $=s=r \theta$

From HW (Piston Problem): A 4cm rod is attached at one end to a point, A, on a wheel of radius 2 cm . The other end B is free to move back and forth along a horizontal bar that goes through the center of the wheel. At time $t=0$ the rod is situated as in the diagram at the left below. The wheel rotates at $3.5 \mathrm{rev} / \mathrm{sec}$.

Find parametric equation for the point A and the point B.

3.5 Implicit Differentiation

Motivation: Consider the unit circle

$$
x^{2}+y^{2}=1
$$

Does NOT define a function. It implicitly defines more than one function.

$$
\begin{aligned}
& y=f(x)=\sqrt{1-x^{2}} \quad \text { or } \\
& y=g(x)=-\sqrt{1-x^{2}}
\end{aligned}
$$

Questions:

1. Find $f^{\prime}(x)$ and $g^{\prime}(x)$.
2. What is the slope of the tangent line

$$
\text { at }(x, y)=\left(\frac{\sqrt{3}}{2},-\frac{1}{2}\right) ?
$$

New idea (Implicit Differentiation):
Given $x^{2}+y^{2}=1$.
Think of y as a function of x and differentiate directly to save time and energy (and gain simplicity).

So think of it as:

$$
x^{2}+(y(x))^{2}=1
$$

Again: What is the slope of the tangent line at $(x, y)=\left(\frac{\sqrt{3}}{2},-\frac{1}{2}\right)$?

General Notes (Implicit Differentiation)
Given any equation of the form:

$$
F(x, y)=0,
$$

we think of y as an implicit function of x

$$
F(x, y(x))=0
$$

and differentiate directly (correctly
using the chain rule as we go!)

Quick Examples: Find $d y / d x$

1. $y^{2}=x$
2. $x^{2} y+y^{2}=3$
3. $x e^{y}+\tan (x)+\sin (y)=1$

Old Midterm Question:

Consider the curve implicitly defined by

$$
\left(x^{3}-y^{2}\right)^{2}+e^{y}=4
$$

Find the (x, y) coordinates of the point A shown (highest point on the curve).

Inverse Functions:
We write inverse functions as
$y=f^{-1}(x)$ which is equivalent to
$f(y)=x$.
We can implicitly differentiate

$$
\begin{aligned}
\frac{d}{d x}[f(y)=x] & \Rightarrow f^{\prime}(y) \frac{d y}{d x}=1 \\
& \Rightarrow \frac{d y}{d x}=\frac{1}{f^{\prime}(y)}
\end{aligned}
$$

1. $y=\sqrt{x}$

$$
\text { 2. } y=\sin ^{-1}(x)
$$

3. $y=\tan ^{-1}(x)$
4. $y=\ln (x)$

$\frac{d}{d x}\left(\sin ^{-1}(x)\right)=\frac{1}{\sqrt{1-x^{2}}}$	$\frac{d}{d x}\left(\cos ^{-1}(x)\right)=-\frac{1}{\sqrt{1-x^{2}}}$
$\frac{d}{d x}\left(\tan ^{-1}(x)\right)=\frac{1}{1+x^{2}}$	$\frac{d}{d x}\left(\cot ^{-1}(x)\right)=-\frac{1}{1+x^{2}}$
$\frac{d}{d x}\left(\sec ^{-1}(x)\right)=\frac{1}{\mathrm{x} \sqrt{x^{2}-1}}$	$\frac{d}{d x}\left(\csc ^{-1}(x)\right)=-\frac{1}{\mathrm{x} \sqrt{x^{2}-1}}$

- Note: The formulas all assume the principal domains as defined in our textbook.

Exercise: Find $d y / d x$

$$
y=\tan ^{-1}\left(e^{3 x}\right)
$$

Now you can just use these shortcuts.

